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ABSTRACT

Camera shake during exposure blurs the captured image. De-

spite several decades of studies, image deconvolution to re-

store a blurred image still remains an issue, particularly in

blind deconvolution cases in which the actual shape of the

blur is unknown. Approaches based on cepstral analysis suc-

ceeded in restoring images degraded by a uniform blur caused

by a camera moving straight in a single direction.

In this paper, we propose to estimate, from a single

blurred image, the point spread function (PSF) caused by

a normal camera undergoing a 2D curved motion, and to

restore the image. To extend the traditional cepstral analysis,

we derive assumptions about the PSF effects in the cepstrum

domain. In a first phase, we estimate several PSF candidates

from the cepstrum of a blurred image and restore the image

with a fast deconvolution algorithm. In a second phase, we se-

lect the best PSF candidate by evaluating the restored images.

Finally, a slower but more accurate deconvolution algorithm

recovers the latent image with the chosen PSF. We validate

the proposed method with synthetic and real experiments.

Index Terms— Image restoration, Blind Deconvolution,

Cepstral analysis, Point spread function

1. INTRODUCTION

Researches on image deconvolution aim to recover a latent

image from one or more blurred images. A blurred image 𝑔
is described by a convolution of a latent image 𝑓 and a point

spread function (PSF) ℎ, which represents the camera path

during its exposure, plus an image noise 𝑛:

𝑔 = 𝑓 ⊗ ℎ+ 𝑛, (1)

where ⊗ denotes the convolution operator. Image deconvo-

lution deals with an inverse problem of Eq. 1. However, it is

mathematically impossible to solve the inverse problem be-

cause of its ill-posedness. Thus, additional cues are required

to solve the inverse problem.

Some methods try to address the blind deconvolution

problem, in which the PSF is assumed as unknown. Bayesian

approaches infer the most likely latent image given the ob-

served blurred image(s) using prior knowledge about the

imaging process and the nature of natural images as an ad-

ditional cue [1]. However, these approaches are regarded as

ad-hoc, because the result depends on learning data derived

from the prior knowledge.

The other type of methods estimate PSF by analysis of the

behavior of the spectrum or the cepstrum of blurred images as

an additional cue. The prior works [2, 3, 4] focus on a 1D PSF.

We previously aimed to extend this approach to a 2D PSF [5].

However, it lacked robustness and theoretical foundation.

In this paper, we aim to expand the target camera motion

of the cepstral approach from 1D to 2D. Our main contribu-

tion is that we investigate the behavior of 1D PSF in the cep-

strum domain and then derive an assumption that the PSF esti-

mation can be done by shortest path searching in the cepstrum

domain. Based on the assumption, we propose a cepstral anal-

ysis based 2D PSF estimation method. Given a single blurred

image, we first estimate PSF candidates from the cepstrum

of the blurred image. The candidates are evaluated from re-

stored images computed with a fast deconvolution algorithm.

Then, a slower but more precise algorithm uses the best PSF

to produce the final restored image. As a result, our method

achieves blind deconvolution from a single blurred image ob-

served by a normal camera undergoing a curved 2D motion

without any prior knowledge of the latent image.

2. CEPSTRAL ANALYSIS

In this section, we investigate the behavior of the cepstrum

of blurred images and then derive an assumption on 2D PSF

estimation in the cepstrum domain.

The cepstrum is the inverse Fourier transform of the log

power spectrum of an image. When the image noise 𝑛 is weak

enough to neglect, the cepstrum of a blurred image 𝐶𝑔 is ap-

proximated as the sum of the cepstrum of a PSF 𝐶ℎ and the

cepstrum of a latent image 𝐶𝑓 as,

𝐶𝑔 = ℱ−1 (log ∣ℱ (𝑔) ∣) = ℱ−1 (log ∣ℱ (𝑓 ⊗ ℎ+ 𝑛) ∣) ,
≈ ℱ−1 (log ∣ℱ (𝑓 ⊗ ℎ) ∣) ,
= 𝐶𝑓 + 𝐶ℎ, (2)

where ℱ denotes the Fourier transform.

Prior works have estimated PSF in the cepstrum domain

when a PSF is a parametric form such as 1D motion param-
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Fig. 1. Cepstrum of blurred image 𝐶𝑔 (blue dot curve), latent

image 𝐶𝑓 (green dash curve), and PSF 𝐶ℎ (red curve)

eterized by the motion length 𝐿 and the motion direction 𝜃.

The spectrum of 1D PSF is modeled by a sinc function, which

has periodic zero values. Rom pointed that the periodic zero

values are corresponding to periodic negative peaks in the

cepstrum domain and the peaks appear with a period of 𝐿
along with the motion direction 𝜃 [2]. Figure 1 depicts cep-

stra along the motion direction in the case of 1D motion blur

of direction 𝜃 and length 𝐿. As [2] pointed, 𝐶ℎ has periodic

negative peaks along with the motion direction 𝜃 and their

period equals to motion length 𝐿. The shape of 𝐶ℎ appears

hyperbolic curve with periodic negative peaks. Consider hy-

perbolic curve as an attenuated line proportional to distance,

𝐶ℎ can be regarded as a set of PSF attenuated by the distance

from the positive peak and each of them appears between the

adjacent peaks. Another characteristic is that 𝐶𝑔 is dominated

by 𝐶ℎ, especially around the positive peak. Therefore, the at-

tenuated PSF appears most clear between the positive peak

and the minimum peak, which is negative peak nearest to the

positive peak.

Based on the above observation, 1D motion parameters

can be estimated by finding the minimum peak. However,

the latent image component 𝐶𝑓 destabilizes finding the min-

imum peak. For stable detection, we use another property

that 𝐶ℎ appears relatively stronger along the motion direc-

tion. Oliveira et al. first estimate the motion direction 𝜃 by

the Radon transform and then estimate the motion length 𝐿
by finding local minimum along with the estimated motion

direction [3]. Ji and Liu proposed the Fourier-Radon trans-

form to estimate the motion parameters 𝜃 and 𝐿 simultane-

ously [4]. Therefore, we conclude that when the path integral

along a path is maximum, the direction of the path denotes

the direction of the motion blur.

Finally, we derive an assumption; a PSF is estimated by

finding a path that maximizes the integral between the posi-

tive peak and the minimum peak in the cepstrum domain.

3. OUR APPROACH

Our method targets shift-invariant PSFs caused by a normal

camera undergoing a continuous 2D curved motion. Based

on the derived assumption, we proposed a method estimating

2D PSF. We start by preprocessing issues to deal with image

noise. Then, we present how to estimate 2D PSF candidates,

and how to select the best one.

3.1. Preprocessing

The cepstrum of a blurred image 𝐶𝑔 has a property that the

PSF component 𝐶ℎ dominates the cepstrum around the pos-

itive peak. To use 𝐶ℎ for PSF estimation, the latent image

component 𝐶𝑓 and also image noise 𝑛 is an obstacle compo-

nent. To reduce the contribution of 𝐶𝑓 and also 𝑛, we uti-

lize the shift-variability of natural images and image noise.

A shift-invariant PSF remains constant over the whole image

while natural images and image noise are shift-variant. The

contribution of the sub-images of shift-variant components

whereas the one of PSF is constant. Thus, the contribution

of shift-variant components is reduced by taking an average

of all cepstrum of sub-images. We first partition a blurred im-

age into sub-images and then take average of all the cepstra

of sub-images.

In the cepstrum domain, the minimum peak plays an im-

portant role for cepstral analysis but it is sometimes too weak

to be detected reliably due to the image noise. Instead of

finding the minimum peak, we extract several local minima

𝑙𝑖(𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁) as candidates from the average cepstrum

𝐶𝑔 . We consider that the minimum peak is included in these

several local minima.

3.2. PSF candidates estimation

Now, we have the average cepstrum of the blurred image 𝐶𝑔

and 𝑁 extracted local minima. Based on the derived assump-

tion, we estimate a PSF by finding a path maximizing integral

between the positive peak and a local minimum in the cep-

strum domain. Because we assume constant speed camera

motion, PSF shape estimation is sufficient. Thus, this prob-

lem can be regarded as a kind of path searching problem. We

apply dynamic programming to solve this problem.

Consider that we take integral from a local minimum

(𝑃,𝑄) to the positive peak (0, 0). Distance from the local

minimum (𝑃,𝑄) to a current position (𝑝, 𝑞) is calculated as

dist(𝑝, 𝑞) = max
(
𝑑𝑝,𝑞 + cost(𝑝+Δ𝑝, 𝑞 +Δ𝑞)𝐶𝑔(𝑝, 𝑞)

)
, (3)

𝑑𝑝,𝑞 = dist(𝑝+Δ𝑝, 𝑞 +Δ𝑞),

where (Δ𝑝,Δ𝑞) ∈ (0, 1), (1, 1), (1, 0). For each cost value

cost(𝑝+Δ𝑝, 𝑞 +Δ𝑞), we consider the connectivity between

(𝑝, 𝑞) and (0, 0). The estimated path should favour smooth

curve or straight line not zigzag line because it represents

camera path. Thus, we set the cost function as follows,

cost (𝑝+Δ𝑝, 𝑞 +Δ𝑞) =
⟨−→𝑣 𝑃,𝑄,

−→𝑣 𝑝+Δ𝑝,𝑞+Δ𝑞⟩
∥−→𝑣 𝑃,𝑄∥ ⋅ ∥−→𝑣 𝑝+Δ𝑝,𝑞+Δ𝑞∥ ,

−→𝑣 𝑗,𝑘 =
−−−→
(𝑗, 𝑘),
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where −→𝑣 𝑗,𝑘 denotes the vector from current position (𝑗, 𝑘) to

(𝑃,𝑄). After taking integral from the local minimum to the

positive peak, we find a path maximizing integral as a shape

of PSF. Because we assume constant speed camera motion,

we assign uniform intensity to the PSF. Totally, 𝑁 PSF can-

didates ℎ̂𝑖 are extracted and each of them are corresponding

to each local minimum 𝑙𝑖.

3.3. PSF candidates evaluation

Now, we have 𝑁 PSF candidates ℎ̂𝑖, each of which has dif-

ferent shape. Since it is difficult to evaluate PSF candidate

itself, we use the restored image instead of PSF candidate for

evaluation.

Most likely PSF is computed as

ℎ̂ = arg min
ℎ̂𝑖

(∣∣∣𝑔 − 𝑓𝑖 ⊗ ℎ̂𝑖

∣∣∣+ 𝜆
√
𝑃 2
𝑖 +𝑄2

𝑖

)
, (4)

where 𝑓𝑖 denotes the restored image recovered by ℎ̂𝑖, (𝑃𝑖, 𝑄𝑖)
denotes the position of 𝑖 th local minimum. The first term

evaluates ringing artifacts. When we restore a blurred image

with a wrong PSF, the restored image has ringing artifacts.

Since the latent image is unknown, we blur the restored im-

age and compare it with the blurred image. The first term

has a minimum when the PSF candidate is correct in theory

but has another minimum when the PSF is a delta function,

corresponding to the identity transformation. To avoid favor-

ing delta function, we add the second term as a regularization

term.

Because the cepstrum is symmetrical about the positive

peak, a set of ℎ̂𝑖 has redundancy about symmetry. Thus, we

first eliminate the ambiguity about the shape and then the

ambiguity about symmetry. For shape ambiguity, we choose

Wiener filtering [6] as a deconvolution algorithm because of

two reasons. First, because it works in the frequency domain,

the symmetry does not affect the restored image. Second,

its computational requirement is reasonable. In this manner,

we choose a PSF ℎ̂ from 𝑁 candidates by evaluating Eq. 4.

Next, we make a symmetric PSF ℎ̂symfrom ℎ̂. We restore the

blurred image by Richardson-Lucy algorithm [7, 8] and eval-

uate these two PSFs based on Eq. 4. Finally, we obtain the

most likely PSF ℎ̂.

4. EXPERIMENTAL RESULT

We performed two experiments using synthetic images and

real images to validate the proposed method. Through the

experiments, we apply a deconvolution method [9] proposed

by Levin et al.

Synthetic experiments. In the synthetic experiment, we use

100 images of 321×241 resolution, randomly chosen from

The Berkeley Segmentation Dataset, and 5 PSFs leading 500

blurred images. Figure 2 shows the enlarged PSFs which orig-

inal size are written in captions. Note that the width of all

Fig. 2. 5 PSFs for synthetic experiments with their size.

Table 1. Deconvolution result of synthetic images.

PSF1 PSF2 PSF3 PSF4 PSF5

w/o 34 96 91 100 91

w/ 71 96 98 100 98

the PSFs is 1 pixel. For each image, we computed the Peak

Signal-to-Noise Ratio (PSNR) of the blurred image PSNR(𝑔)

and the one of the restored image PSNR(𝑓) and then com-

puted the PSNR ratio PSNR(𝑓)/PSNR(𝑔). The ratio greater

than 1.0 means that the restored image is closer to the original

image than the blurred image. Table 1 shows the number of

cases of which ratio is greater than 1.0 with respect to each

PSF. Top row shows the result using raw cepstrum, skipping

the preprocessing, and bottom row shows the result of the pro-

posed method. Except PSF1, more than 90 of 100 blurred im-

ages result in the ratio greater than 1.0. The reason why PSF1

results in relatively worse than others is because of its energy.

When a PSF has smaller size, the cepstrum of the PSF has

also smaller energy. In such case (e.g., PSF1 of w/o case),

𝐶ℎ does not dominate 𝐶𝑔 , then the proposed method fails.

On the other hand, w/ cases including our preprocessing pro-

vided better result. This result indicates that the performance

of the preprocessing can reduce the contribution of the latent

image component 𝐶𝑓 . Next, we added i.i.d. Gaussian noises

with varying variances to blurred images and then applied our

method to examine the effect of image noise. Table 2 shows

the result of 500 trials. From top to bottom, the average value

of PSNR(𝑔), the average value of PSNR(𝑓) and the number

of success of 500 trials are shown. A successful case means a

case which PSNR ratio is greater than 1.0. Comparison of the

average value of PSNR(𝑔) and one of PSNR(𝑓) shows that

the restored images are closer to the original images than the

blurred images. The result of the number of success indicates

that our method results in better result more than 80 percent

even with image noise.

Table 2. Deconvolution result under varying image noise.

Variance 0 5 10 15 20

PSNR(𝑔) 22.6 22.5 22.3 22.2 22.1

PSNR(𝑓) 24.2 24.2 24.0 23.8 23.5

# success 463 459 455 444 434
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Fig. 3. Deconvolution result of real images. From left to right,

blurred image, restored image by our method, restored image

by [1] are shown.

Real world experiments. In the real world experiment, we

compare the proposed method with a Bayesian approach [1]

to validate the proposed method. Figure 3 shows the result of

two scenes with their resolution. Each caption of our method

and [1] denotes the size of estimated PSF. Dashed frame

in the figure shows estimated PSF. Second and fourth rows

are zoom-up of framed region in first and third rows respec-

tively. On the ORANGE scene, both the restored images by

our method and [1] get clearer and sharper, especially text

on the image is more readable on the restored images. This

result indicates that both methods estimate PSF closer to the

correct one. On the other hand, [1] recovers the latent image

including artifact on the BOOK scene while our method gets

clearer restored image. One of the reasons [1] failed is their

assumption. Bayesian approaches utilize the natural image

statistics for PSF estimation. The book scene consists of text,

bright region on the right side, and few pictures on the left

side. The property of such scene is difficult to describe by the

natural image statistics. Other results will be available on the

project webpage (http://www.hvrl.ics.keio.ac.
jp/˜charmie/work/id/icip2010/).

5. CONCLUSION

In this paper, we focus on blind deconvolution for a single

blurred image taken by a normal camera undergoing a curved

2D motion. We identified the characteristics of the cepstrum

of PSFs and derived the assumption. Basic idea of the our

method is that the PSF is estimated by finding a path which

maximizes integral between the positive peak and the min-

imum peak in the cepstrum domain. Our method relies on

dynamic programming to find these paths, yielding PSF can-

didates. The candidates are evaluated from restored images

computed with a fast deconvolution algorithm. A slower but

more precise algorithm then uses the best PSF to produce the

final restored image. The our method is applied for both syn-

thetic images and real images for validation. As experimental

results show, our method achieves blind deconvolution from

a single blurred image observed by a normal camera under-

going a curved 2D motion.
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